

Corporate Presentation

Leader in AAV Gene Therapy

June 1, 2019

Forward-looking statements

This presentation includes "forward-looking statements," within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These statements express a belief, expectation or intention and are generally accompanied by words that convey projected future events or outcomes such as "believe," "may," "will," "estimate," "continue," "anticipate," "design," "intend," "expect," "could," "plan," "potential," "predict," "seek," "should," "would" or by variations of such words or by similar expressions. The forward-looking statements include statements relating to, among other things, REGENXBIO's future operations, clinical trials, costs and cash flow. REGENXBIO has based these forward-looking statements on its current expectations and assumptions and analyses made by REGENXBIO in light of its experience and its perception of historical trends, current conditions and expected future developments, as well as other factors REGENXBIO believes are appropriate under the circumstances. However, whether actual results and developments will conform with REGENXBIO's expectations and predictions is subject to a number of risks and uncertainties, including the timing of enrollment, commencement and completion and the success of clinical trials conducted by REGENXBIO, its licensees and its partners, the timing of commencement and completion and the success of preclinical studies conducted by REGENXBIO and its development partners, the timely development and launch of new products, the ability to obtain and maintain regulatory approval of product candidates, the ability to obtain and maintain intellectual property protection for product candidates and technology, trends and challenges in the business and markets in which REGENXBIO operates, the size and growth of potential markets for product candidates and the ability to serve those markets, the rate and degree of acceptance of product candidates, and other factors, many of which are beyond the control of REGENXBIO. Refer to the "Risk Factors" and "Management's Discussion and Analysis of Financial Condition and Results of Operations" sections of REGENXBIO's Annual Report on Form 10-K for the year ended December 31, 2018 and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-Q and other filings, which have been filed with the U.S. Securities and Exchange Commission (SEC) and are available on the SEC's website at www.sec.gov. All of the forward-looking statements made in this presentation are expressly gualified by the cautionary statements contained or referred to herein. The actual results or developments anticipated may not be realized or, even if substantially realized, they may not have the expected consequences to or effects on REGENXBIO or its businesses or operations. Such statements are not guarantees of future performance and actual results or developments may differ materially from those projected in the forwardlooking statements. Readers are cautioned not to rely too heavily on the forward-looking statements contained in this presentation. These forwardlooking statements speak only as of the date of this presentation. REGENXBIO does not undertake any obligation, and specifically declines any obligation, to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

REGENXBIO: seeking to improve lives through the curative potential of gene therapy

4 clinical stage programs

with next data readout for RGX–314 expected in late 2019

1 FDA approved product and

14 clinical stage product candidates

being developed by third-party licensees; over 20 partnered programs in total

Proprietary NAV[®] Technology Platform includes exclusive *worldwide rights to over 100 AAV vectors*, including AAV7, AAV8, AAV9 and AAVrh10

Management team are experienced drug developers and leaders in gene therapy

REGENXBIO's lead programs

Internally developed product candidates

Indication		Developm	ent Stage		Anticipated Milestones
	Research	Preclinical	Phase I / II	Phase III	
Retinal Disease RGX-314 wet AMD					Phase I/IIa data and initiation of Phase IIb trial in late 2019
RGX–314 Diabetic retinopathy					IND submission in 2H 2019
Neurodegenerative Disease RGX–121 ▲★■ MPS II					Interim data update in 2H 2019
RGX-111 ▲★■ MPS I					Begin enrollment in Phase I trial in mid-2019
RGX–181 ▲★ CLN2 disease					IND submission in 2H 2019
Metabolic Disease RGX-501 ▲ HoFH					Interim data update in 2H 2019
REGENXBIO	★ Rare Pedi	rug Designation atric Disease Desig k Designation	nation		4

REGENXBIO's NAV Technology Platform has been widely adopted

Over 20 partnered product candidates being developed by NAV Technology Licensees

REGENXBIO

	Research		Preclinical		Phase I / II		Phase III / Approved	
	Indication	Licensee	Indication	Licensee	Indication	Licensee	Indication	Licensee
Liver / hematologic	PKU	ultrageny	Wilson Disease		Hemophilia A	Takeda		
					Hemophilia A			
					OTC Deficiency	ultrageny		
					GSDIa	ultrageny		
					Crigler-Najjar	AUDENTES >		
	CDKL5 Deficiency		Rett Syndrome	U NOVARTIS	SMA Type II / III	U NOVARTIS	SMA Type I	U NOVARTIS
ystem	Undisclosed	Prevail	ALS SOD1	U NOVARTIS	MPS IIIA		MPS IIIA	LYSŒENE § S <u>AREP</u> ITA
s sno,			CLN3		MPS IIIA	ESTEVE		
Central nervous system			Parkinson's w/ GBA Neuronopathic Gauc		MPS IIIB			
Centra			FTD-GRN		CLN1			
_			Synucleinopathies (GBA + α-Syn RNAi)	Prevail THERAPEUTICS				
uscle			Pompe Disease	AUDENTES >>	XLMTM	AUDENTES >		
cardiac / skeletal muscle					СРVТ	AUDENTES >		
skele					Danon Disease	Procket		

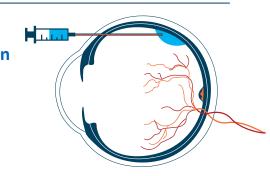
Zolgensma® is approved in the U.S. for the treatment of pediatric patients less than 2 years of age with SMA with bi-allelic mutations in the SMN1 gene

Internal Development Programs

RGX–314 for treatment of wet age-related macular degeneration (wet AMD)

THE DISEASE

- Blurring of central vision and progressive vision loss due to formation of leaky blood vessels in the eye
- VEGF inhibitors are standard of care to treat fluid and associated vision loss
- Frequency / uncomfortable administration of current anti-VEGF therapies affects compliance and ultimately efficacy
- >2 million patients estimated in U.S., Europe and Japan


RGX–314 PRODUCT CANDIDATE

Mechanism of action

Reducing leaky blood vessel formation by giving retinal cells the ability to produce an anti-VEGF fab

Route of
administrationSubretinal

RGX–314 Phase I/IIa clinical trial in wet AMD

Primary

 To determine the safety and tolerability of RGX–314 in subjects with wet AMD through six months

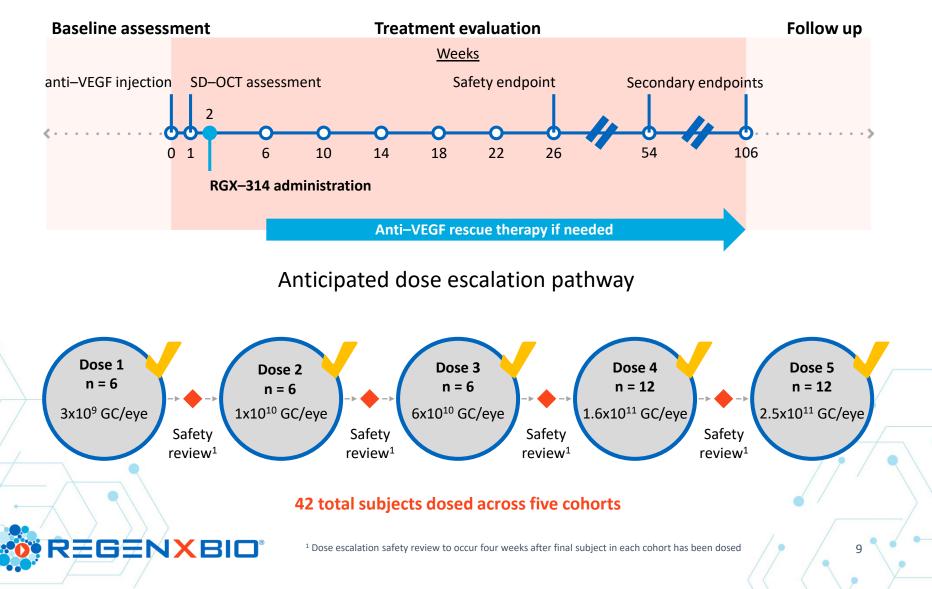
Secondary

- Expression of RGX–314 protein in the eye
- Effect of RGX–314 on best corrected visual acuity (BCVA) and central retinal thickness (CRT) as measured by Spectral Domain Optical Coherence Tomography (SD–OCT)
- Additional anti–VEGF injections post-RGX–314

Subjects: Up to 42 total

ZGZNXBIO

Sites: Eight leading retinal surgery centers across the United States



KEY INCLUSION CRITERIA

- Male or female ≥ 50 to 89 years of age
- Previously treated wet AMD subjects requiring ≥4 anti–VEGF injections in the 8 months prior to trial entry
- Documented response to anti–VEGF at trial entry (assessed by SD–OCT at week 1)
- Vision of 20/63 to 20/400 for the initial subject, then 20/40 to 20/400 for the rest of each cohort
- Pseudophakic (status post cataract surgery)

RGX-314 Phase I/IIa clinical trial – administration and dose escalation

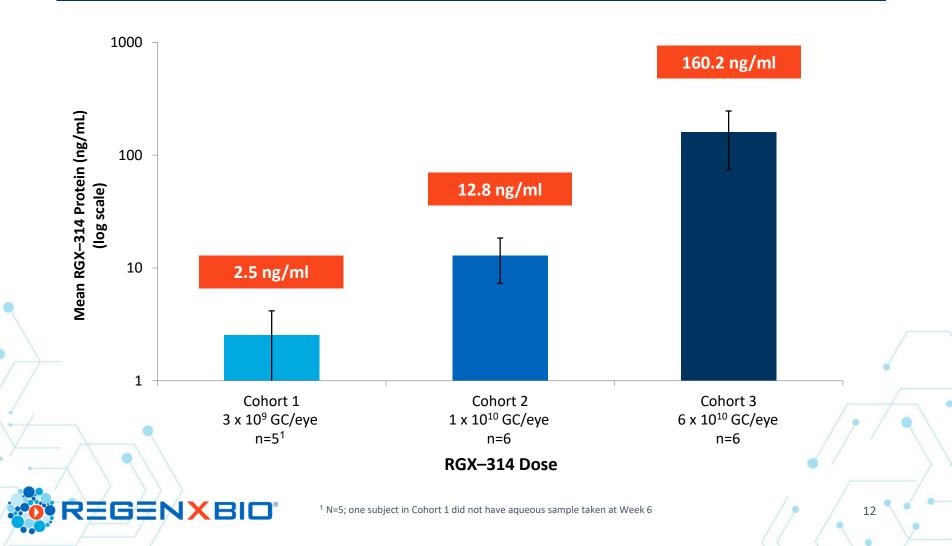
Administration and follow-up timeline

RGX-314 Phase I/IIa clinical trial – safety summary¹

- RGX-314 was well-tolerated (n=33)²
- No drug-related AEs or drug-related SAEs
- Most AEs were assessed as mild (Grade 1 82%)
- No observed clinically determined immune responses, drug-related ocular inflammation, or any post-surgical inflammation beyond what is expected following routine vitrectomy
- Eight SAEs that were not drug-related were reported in five subjects

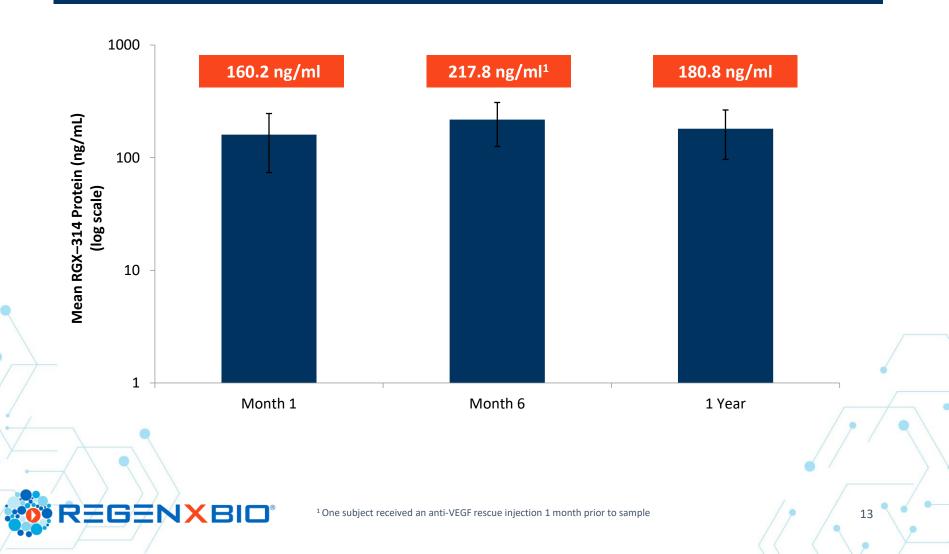
RGX–314 clinical trial summary through one year

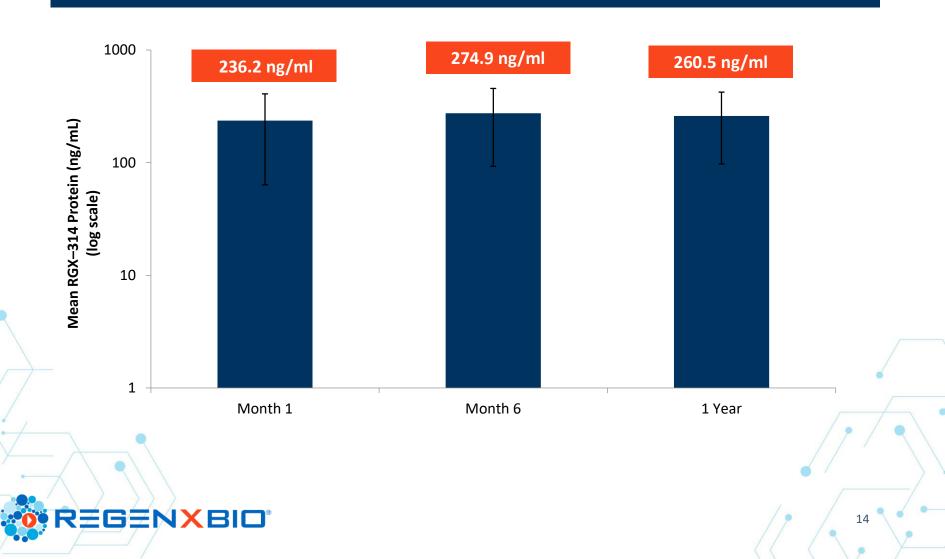
REGENXBIO


	Aqueous RGX–314 protein one month post–treatment	Aqueous RGX–314 protein one year post–treatment	Mean # of anti– VEGF injections through one year	Mean change in CRT one year post-treatment	Mean change in BCVA one year post-treatment
Cohort 1 3x10 ⁹ GC/eye (n=6)	2.5 ng/ml ¹	2.2 ng/ml ²	10.5 inj ³	+33 μm²	-7 letters ²
Cohort 2 1x10 ¹⁰ GC/eye (n=6)	12.8 ng/ml	45.8 ng/ml	8.8 inj	+56 μm	+2 letters
Cohort 3 6x10 ¹⁰ GC/eye (n=6)	160.2 ng/ml	180.8 ng/ml	2.3 inj	-39 μm	+5 letters

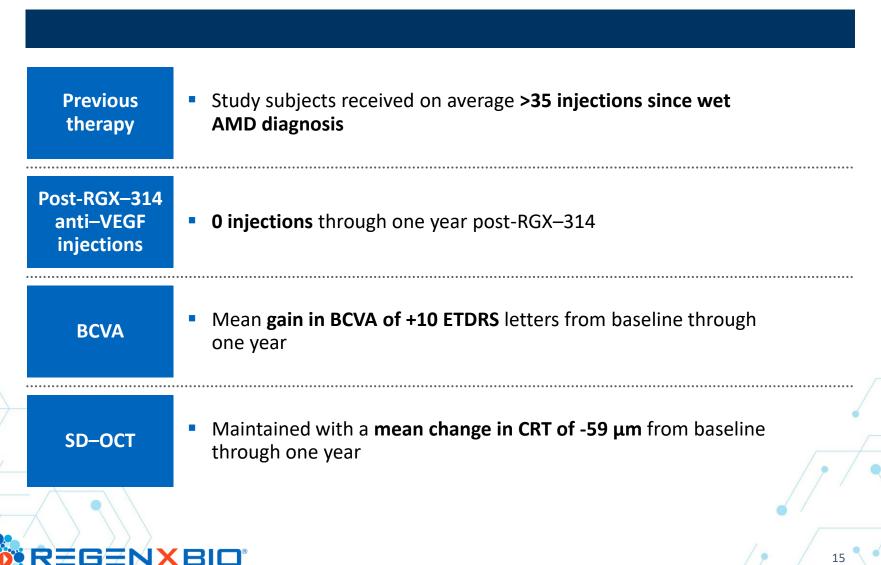
¹ N=5; one subject in Cohort 1 did not have aqueous sample taken at Week 6
 ² N=5; one subject in Cohort 1 discontinued from the study at four months
 ³ One subject in Cohort 1 discontinued from the study at four months with four injections and was imputed as requiring thirteen injections through one year (or 52 weeks)

11


RGX–314 protein levels at one month

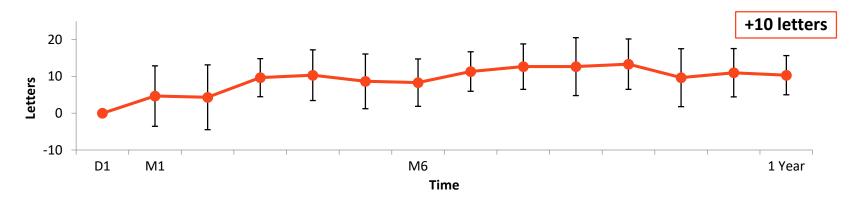

RGX-314 Phase I/IIa trial: Sustained protein levels at one year

All subjects (n=6) in Cohort 3 (6 x 10¹⁰ GC/eye)

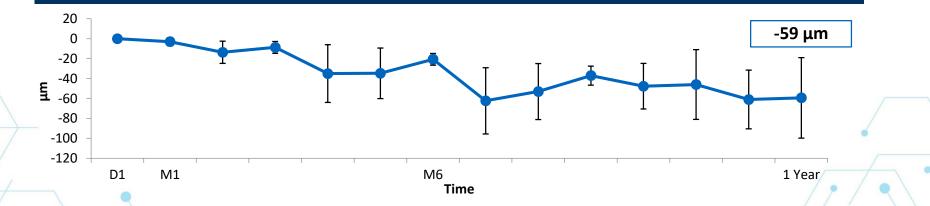


RGX-314 Phase I/IIa trial: Sustained protein levels at one year

Subjects with No Rescue Injections (n=3) in Cohort 3 (6 x 10¹⁰ GC/eye)



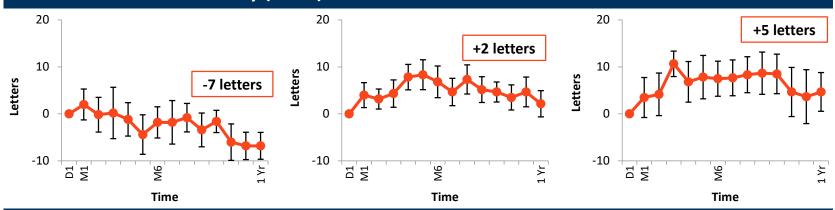
Cohort 3: Three subjects with no additional anti–VEGF injections through one year

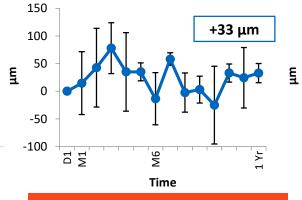


RGX–314 Phase I clinical trial – mean change in BCVA, CRT over one year in Cohort 3 subjects with no rescue injections (n=3)

Best Corrected Visual Acuity (BCVA)

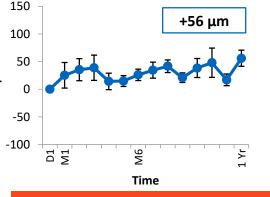
Central Retinal Thickness (CRT) on SD-OCT



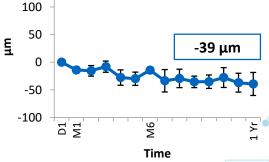

16

RGX–314 Phase I/IIa trial: Mean change in BCVA, CRT and average injections over one year

Best Corrected Visual Acuity (BCVA)



Central Retinal Thickness (CRT) on SD-OCT


Average Injections: 10.5

ZEGENXBID

Average Injections: 8.8

Cohort 2

150

Average Injections: 2.3

Cohort 3

Cohort 1¹

¹One subject in Cohort 1 did not have aqueous sample taken at week 6; one subject in Cohort 1 discontinued from the study at four months with four injections and was imputed as requiring thirteen injections through one year.

17

RGX-314 for treatment of Diabetic Retinopathy (DR)

THE DISEASE

- Leading cause of vision loss in adults between
 24 75 years of age
- Spectrum encompasses nonproliferative DR and proliferative DR with or without macular edema
- Treatment options include anti-VEGF injections or panretinal laser treatment
- Approx. 8 million patients estimated in United States

RGX–314 PRODUCT CANDIDATE

Gene: anti-VEGF Fab

Mechanism of action

Regressing diabetic blood vessels by giving retinal cells the ability to produce an anti-VEGF fab

Route of administration Subretinal

REGENXBIO's neurodegenerative disease franchise

RGX–121 for MPS II

RGX–111 for MPS I

leading to neurodegeneration and

Available treatment is inadequate to

Approximately 500 – 1,000 patients

treat neurodegeneration; bone marrow

Reduced ability to process GAGs,

Autosomal recessive disease

transplant partially effective

born annually worldwide

Fast Track Designation

early death

- Reduced ability to process glycosaminoglycans (GAGs), leading to neurodegeneration and early death
- X-linked recessive disease

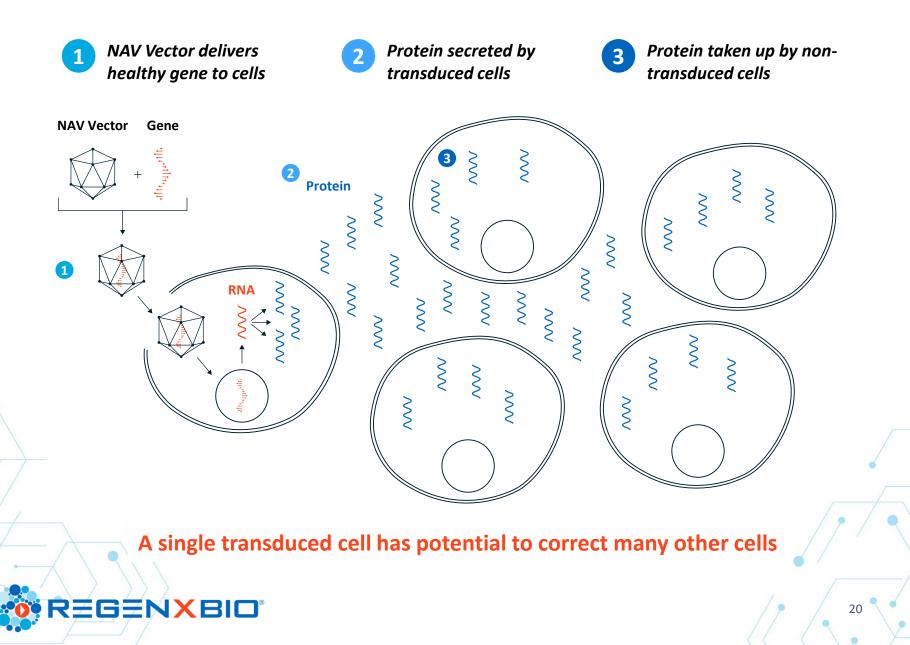
Fast Track Designation

REGENXBIO

Disease

nations

- Available treatment is inadequate to treat neurodegeneration
- Approximately 500 1,000 patients born annually worldwide


RGX–181 for CLN2 disease

- Reduced ability to process cellular waste peptides, leading to seizures, vision loss, neurodegeneration and early death
- Autosomal recessive disease
- Available treatment requires frequent ICV infusions of ERT, shown to stabilize some but not all disease manifestations
- Approximately 500 patients born annually worldwide

Vector	AAV9	AAV9	AAV9
Gene	IDS gene replacement	IDUA gene replacement	TPP1 gene replacement
- IIII H Admin		Intracisternal 🕎	Intracisternal 🕎
Desig-	 Orphan Drug Designation Rare Pediatric Disease Designation 	 Orphan Drug Designation Rare Pediatric Disease Designation 	 Orphan Drug Designation Rare Pediatric Disease Designation

19

Cross-correction is a key treatment advantage in MPS and CLN2 disease

RGX–121 Phase I/II clinical trial in MPS II

Primary

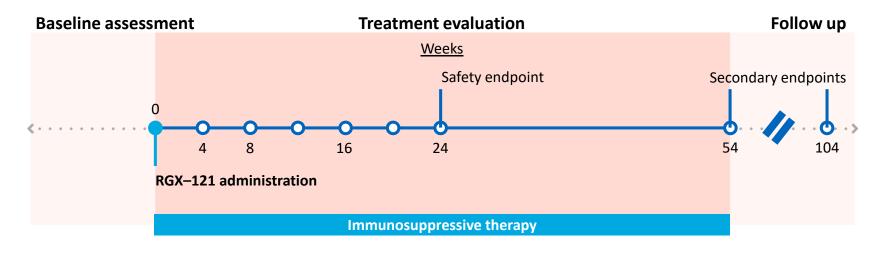
 To determine the safety and tolerability of RGX–121 in severe MPS II subjects who have or are at high risk of developing neurocognitive deficits

Secondary

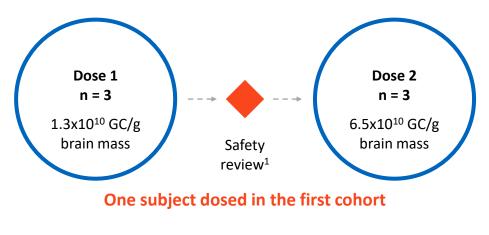
- Effect of RGX–121 on biomarkers of I2S activity in CSF, serum and urine
- Effect of RGX–121 on neurocognitive deficits

Subjects: Up to 6 total

REGENXBIO


Sites: Leading U.S. and international lysosomal storage disease centers

Key inclusion criteria


- Male subjects ≥4 months to <5 years of age</p>
- Meeting one of the following criteria:
 - Diagnosis of MPS II and a score >55 and ≤77 on intelligent quotient testing OR
 - Diagnosis of MPS II and a score >55 and a decline of ≥1 standard deviation on intelligent quotient testing OR
 - Having a relative diagnosed with severe MPS II who has the same IDS mutation as the subject
- No contraindications for intracisternal injection and immunosuppressive therapy

RGX-121 Phase I/II clinical trial - administration and dose escalation

Administration and follow-up timeline

Expected dose escalation pathway

REGENXBIO

RGX–111 U.S. Phase I clinical trial in MPS I

Primary

To determine the safety and tolerability of RGX-111 in MPS I subjects with neurocognitive deficits

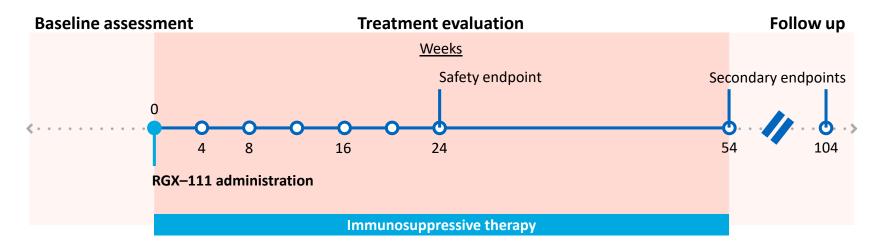
Secondary

- Effect of RGX–111 on biomarkers of IDUA activity in CSF, serum and urine
- Effect of RGX–111 on neurocognitive deficits

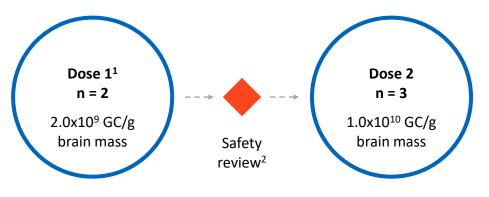
Subjects: Up to 5 total

Sites: Leading U.S. and international lysosomal storage disease centers

REGENXBIO



Key inclusion criteria


- Male or female
 - First subject ≥18 years of age
 - Subsequent subjects ≥ 6 years of age
- Documented evidence of early-stage neurocognitive deficit due to MPS I
 - A score of ≥1 standard deviation below mean on intelligent quotient testing or in one domain of neuropsychological function
 - A decline of ≥1 standard deviation on sequential testing
- No contraindications for intracisternal injection or immunosuppressive therapy 23

RGX-111 U.S. Phase I clinical trial - administration and dose escalation

Administration and follow-up timeline

Expected dose escalation pathway

¹ First subject to be ≥18 years of age

REGENXBID

² Dose escalation safety review to occur eight weeks after final subject in cohort has been dosed

24

RGX–501 for treatment of homozygous familial hypercholesterolemia (HoFH)

THE DISEASE

- Defective LDLR gene leads to limited / no LDL cholesterol receptors, allowing LDL to build up in bloodstream
- Total cholesterol levels >500 mg/dL
- Coronary artery disease at young age
- Even with existing standard of care therapies, the mean age of death is 32 years
- Approx. 11,000 patients worldwide

RGX–501 PRODUCT CANDIDATE

Mechanism of action

Correction of defective LDLR, reducing circulating LDL cholesterol

Route of administration Intravenous Special Regulatory Status Orphan Drug Designation

RGX–501 Phase I/II clinical trial in HoFH

Primary

 To determine the safety and tolerability of RGX-501 in subjects with HoFH

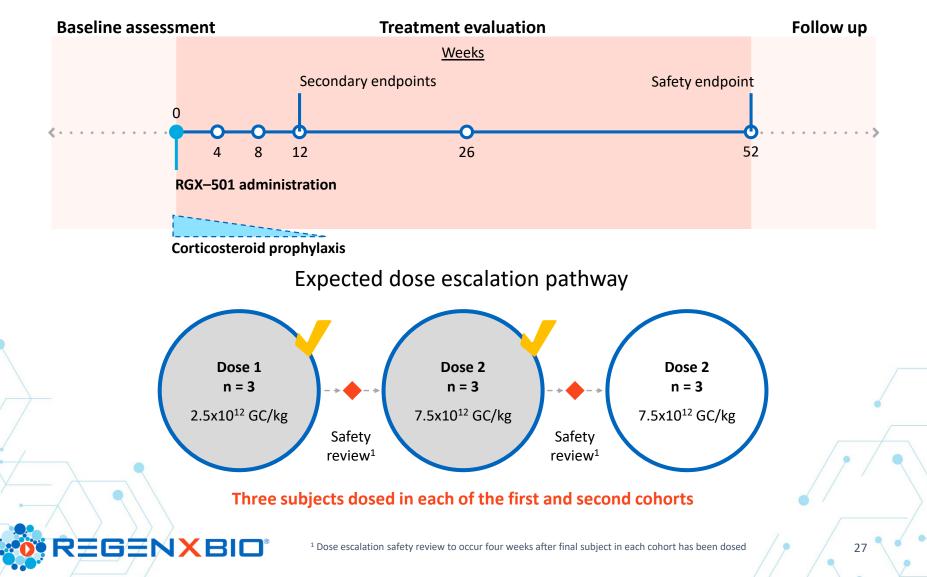
Secondary

- Percent change in LDL-C levels at 12 weeks
- Other lipid outcome measures

Subjects: Up to 12 total

ZGZNXBIO

Sites: University of Pennsylvania as single center for RGX-501 administration. Penn or selected US and international sites for treatment evaluation and follow-up



Key inclusion criteria

- Male or female ≥ 18 years of age
- Untreated and/or treated LDL-C levels and clinical presentation consistent with the diagnosis of HoFH
- Molecularly defined LDLR mutations at both LDLR alleles
- Stable concurrent allowed lipid lowering medications
 - Statins, ezetimibe, bile acid sequestrants, PCSK9i

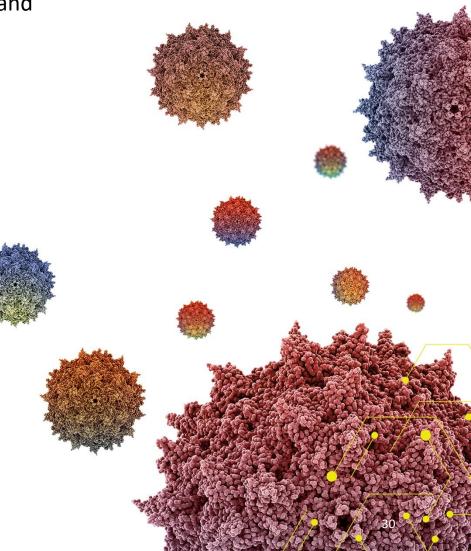
RGX-501 Phase I/II clinical trial - study design

Administration and follow-up timeline

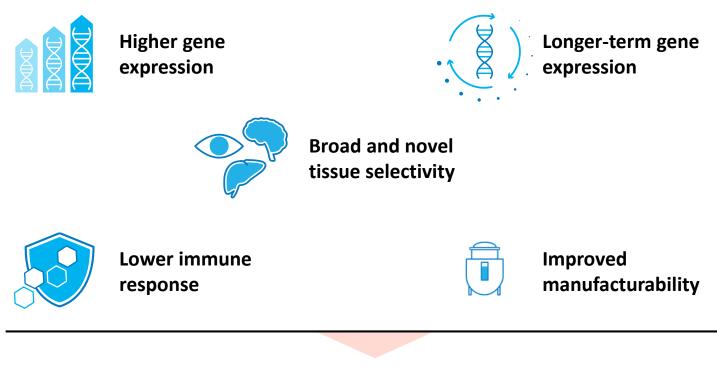
RGX–501 Phase I/II clinical trial interim results and program update

Summary

- Transaminase elevations observed in Cohort 2
- Administration of steroid appears to mitigate transaminase elevations and related effects
- Clinical trial protocol has been amended to allow for the enrollment of additional subjects using steroid prophylaxis
- U.S. IND application transferred to REGENXBIO from University of Pennsylvania in November 2018; transfer of the Clinical Trial Applications for all other participating countries is ongoing


The NAV Technology Platform is based on a **broad and deep IP portfolio**

Exclusive rights to more than **100 patents** and **patent applications worldwide**


• AAV7, AAV8, AAV9, AAVrh10

REGENXBIO

- Over 100 other novel AAV sequences
- Sequences that are at least 95% identical to these capsids

Key features of REGENXBIO's NAV Technology Platform

ZGZNXBIO

Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B

nature biotechnology

Intravascular AAV9 Preferentially Targets Neonatal Neurons and Adult Astrocytes

NAV Vectors: higher gene expression than early generation AAV vectors

AAV2 AAV8 NAV Vector AAV8: 10x–100x greater gene expression NAV Vector AAV8: More efficient gene delivery to sites of most retinal dystrophies¹ AAV2 AAV8 **Retinal Pigment Retinal Pigment** Epithelium (RPE) Epithelium (RPE) Photoreceptors (PR) Photoreceptors (PR) REGENXBIO ¹ Vandenberghe et al. 2011 Science Translational Medicine 32

REGENXBIO | cGMP Manufacturing

REGENXBIO[®]

Strength in AAV production and deep experience in biologics scale up and commercialization

Mammalian cell-based production	 Natural host for AAV Robust process utilizing mammalian cell lines with known regulatory history Core in-house capability in adapting adherent cell lines to suspension cell culture-based systems Suspension cell culture process developed and transferred to CMO
Focus on process, quality and analytics	 Deep in-house knowledge of AAV characterization and production Focused efforts on integrated upstream and downstream process optimization and scale-up Significant expertise and investment in quality systems and downstream analytics
Large-scale cGMP capacity at CMOs	 Agreements with multiple leading biologics CMOs for production of materials under cGMP, including secured large-scale (up to 2,000L) capacity and commercial production at FUJIFILM REGENXBIO platform processes transferred to all CMO partners with robust performance and yields FUJIFILM relationship supports clinical development and potential future commercial needs Leveraging flexibility and scale at CMOs to ensure supply while managing capital investment
Clinical manufacturing status	 Completed production of investigational product for four lead product candidates in an amount which is expected to supply on-going clinical trials; GMP campaign in progress for RGX–181 In-house GMP testing established to accelerate release of clinical supplies Capability to progress from candidate selection to clinical material in 12 months

33

Team and Conclusion

The **REGENXBIO** team

Name	Position	Prior Affiliations		
Ken Mills	President, CEO & Co-Founder; Director	FOXKISER		
Olivier Danos, Ph.D.	SVP and Chief Scientific Officer	Biogen	Chrs	
Vit Vasista	SVP and Chief Financial Officer	SVP and Chief Financial Officer PRTM		
Steve Pakola, M.D.	SVP and Chief Medical Officer	aerpio		
Curran Simpson	SVP, Product Development and Chief Technology Officer	gsk	Human Genome Sciences	
Ram Palanki, Pharm.D.	SVP, Commercial Strategy and Operations	Santen	Genentech A Member of the Roche Group	
Patrick Christmas, J.D.	SVP and General Counsel	Lumara Health [™]	Wellstat Therapeutics	
Laura Coruzzi, Ph.D., J.D.	SVP, Intellectual Property	J	DAY.	
Shiva Fritsch	SVP, Human Resources	NOVAVAX	Human Genome Sciences	
REGENXBI	•		3!	

Financial results and guidance

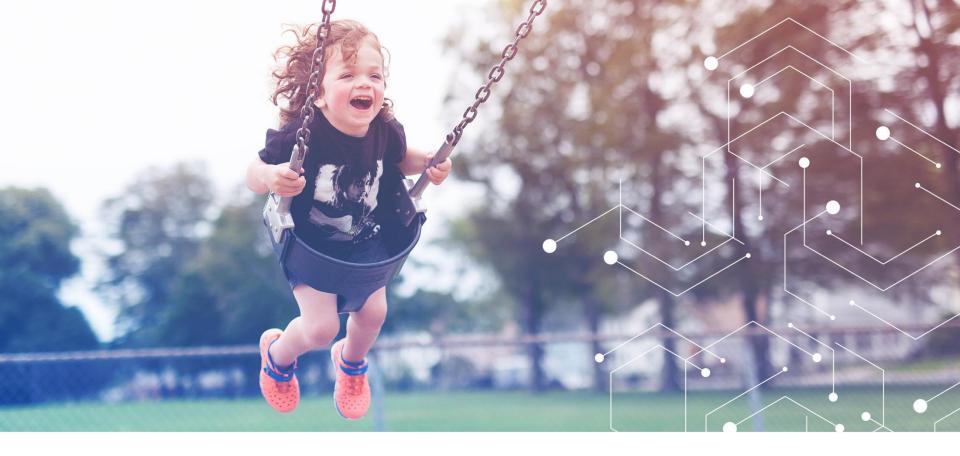
Q1 2019 financials (mm)

R&D expense:	\$25
G&A expense:	\$12
Net loss:	\$32
Basic share count (3/31/19):	36.6

Financial highlights

Ended Q1 2019 with \$444 million in cash¹

Pending approval by regulatory authorities and product launch, will begin recognizing **royalty revenue from commercial sales of Novartis' Zolgensma**


Program guidance and anticipated milestones

RGX-314	wet AMD: Phase I/IIa data and initiation of Phase IIb trial by end of 2019 Diabetic retinopathy: IND submission in 2H 2019
RGX-121	Interim data update in 2H 2019
RGX-111	IND active and subject recruiting ongoing; interim data update in 2H 2019
RGX-501	Interim data update in 2H 2019
RGX-181	IND submission in 2H 2019

2019 financial guidance:

≠G=NXBIO

Expect 2019 ending cash balance to be between **\$330 million and \$350 million**, excluding any potential royalty revenue from commercial sales of Novartis' ZOLGENSMA for the treatment of SMA Type I

Thank You

